direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C32⋊C4, (C3×C6)⋊C4, C3⋊S3⋊2C4, C32⋊1(C2×C4), C3⋊S3.3C22, (C2×C3⋊S3).2C2, SmallGroup(72,45)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊S3 — C32⋊C4 — C2×C32⋊C4 |
C32 — C2×C32⋊C4 |
Generators and relations for C2×C32⋊C4
G = < a,b,c,d | a2=b3=c3=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >
Character table of C2×C32⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | 1 | 1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | linear of order 4 |
ρ9 | 4 | 4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ10 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | orthogonal faithful |
ρ11 | 4 | 4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | orthogonal faithful |
(1 4)(2 3)(5 12)(6 9)(7 10)(8 11)
(1 5 7)(2 8 6)(3 11 9)(4 12 10)
(2 6 8)(3 9 11)
(1 2)(3 4)(5 6 7 8)(9 10 11 12)
G:=sub<Sym(12)| (1,4)(2,3)(5,12)(6,9)(7,10)(8,11), (1,5,7)(2,8,6)(3,11,9)(4,12,10), (2,6,8)(3,9,11), (1,2)(3,4)(5,6,7,8)(9,10,11,12)>;
G:=Group( (1,4)(2,3)(5,12)(6,9)(7,10)(8,11), (1,5,7)(2,8,6)(3,11,9)(4,12,10), (2,6,8)(3,9,11), (1,2)(3,4)(5,6,7,8)(9,10,11,12) );
G=PermutationGroup([[(1,4),(2,3),(5,12),(6,9),(7,10),(8,11)], [(1,5,7),(2,8,6),(3,11,9),(4,12,10)], [(2,6,8),(3,9,11)], [(1,2),(3,4),(5,6,7,8),(9,10,11,12)]])
G:=TransitiveGroup(12,40);
(1 3)(2 4)(5 12)(6 9)(7 10)(8 11)
(2 5 10)(4 12 7)
(1 8 9)(2 5 10)(3 11 6)(4 12 7)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
G:=sub<Sym(12)| (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (2,5,10)(4,12,7), (1,8,9)(2,5,10)(3,11,6)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12)>;
G:=Group( (1,3)(2,4)(5,12)(6,9)(7,10)(8,11), (2,5,10)(4,12,7), (1,8,9)(2,5,10)(3,11,6)(4,12,7), (1,2,3,4)(5,6,7,8)(9,10,11,12) );
G=PermutationGroup([[(1,3),(2,4),(5,12),(6,9),(7,10),(8,11)], [(2,5,10),(4,12,7)], [(1,8,9),(2,5,10),(3,11,6),(4,12,7)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)]])
G:=TransitiveGroup(12,41);
(1 2)(3 11)(4 12)(5 13)(6 14)(7 16)(8 17)(9 18)(10 15)
(1 10 8)(2 15 17)(3 9 12)(4 11 18)(5 14 7)(6 16 13)
(1 4 6)(2 12 14)(3 7 15)(5 17 9)(8 18 13)(10 11 16)
(1 2)(3 4 5 6)(7 8 9 10)(11 12 13 14)(15 16 17 18)
G:=sub<Sym(18)| (1,2)(3,11)(4,12)(5,13)(6,14)(7,16)(8,17)(9,18)(10,15), (1,10,8)(2,15,17)(3,9,12)(4,11,18)(5,14,7)(6,16,13), (1,4,6)(2,12,14)(3,7,15)(5,17,9)(8,18,13)(10,11,16), (1,2)(3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18)>;
G:=Group( (1,2)(3,11)(4,12)(5,13)(6,14)(7,16)(8,17)(9,18)(10,15), (1,10,8)(2,15,17)(3,9,12)(4,11,18)(5,14,7)(6,16,13), (1,4,6)(2,12,14)(3,7,15)(5,17,9)(8,18,13)(10,11,16), (1,2)(3,4,5,6)(7,8,9,10)(11,12,13,14)(15,16,17,18) );
G=PermutationGroup([[(1,2),(3,11),(4,12),(5,13),(6,14),(7,16),(8,17),(9,18),(10,15)], [(1,10,8),(2,15,17),(3,9,12),(4,11,18),(5,14,7),(6,16,13)], [(1,4,6),(2,12,14),(3,7,15),(5,17,9),(8,18,13),(10,11,16)], [(1,2),(3,4,5,6),(7,8,9,10),(11,12,13,14),(15,16,17,18)]])
G:=TransitiveGroup(18,27);
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 17)(12 18)(13 24)(14 21)(15 22)(16 23)
(1 20 21)(2 22 17)(3 23 18)(4 19 24)(5 10 14)(6 15 11)(7 16 12)(8 9 13)
(2 17 22)(4 24 19)(6 11 15)(8 13 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,10,14)(6,15,11)(7,16,12)(8,9,13), (2,17,22)(4,24,19)(6,11,15)(8,13,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,20,21)(2,22,17)(3,23,18)(4,19,24)(5,10,14)(6,15,11)(7,16,12)(8,9,13), (2,17,22)(4,24,19)(6,11,15)(8,13,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,17),(12,18),(13,24),(14,21),(15,22),(16,23)], [(1,20,21),(2,22,17),(3,23,18),(4,19,24),(5,10,14),(6,15,11),(7,16,12),(8,9,13)], [(2,17,22),(4,24,19),(6,11,15),(8,13,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,76);
C2×C32⋊C4 is a maximal subgroup of
S32⋊C4 C3⋊S3.Q8 C2.PSU3(𝔽2) C4⋊(C32⋊C4) C62⋊C4 C32⋊F5⋊C2
C2×C32⋊C4 is a maximal quotient of C3⋊S3⋊3C8 C32⋊M4(2) C4⋊(C32⋊C4) C62.C4 C62⋊C4 C32⋊F5⋊C2
action | f(x) | Disc(f) |
---|---|---|
12T40 | x12+2x10-36x8+8x6+416x4-1280x2+1600 | 278·38·514·294 |
12T41 | x12-3x9-x6+3x3+1 | 318·59 |
Matrix representation of C2×C32⋊C4 ►in GL4(ℤ) generated by
-1 | 0 | 0 | 0 |
0 | -1 | 0 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
0 | 1 | 0 | 0 |
-1 | -1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | -1 | -1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 |
0 | 0 | 1 | 0 |
0 | 0 | -1 | 0 |
0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 |
G:=sub<GL(4,Integers())| [-1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-1],[0,-1,0,0,1,-1,0,0,0,0,0,-1,0,0,1,-1],[1,0,0,0,0,1,0,0,0,0,-1,1,0,0,-1,0],[0,0,1,-1,0,0,0,-1,-1,0,0,0,0,-1,0,0] >;
C2×C32⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes C_4
% in TeX
G:=Group("C2xC3^2:C4");
// GroupNames label
G:=SmallGroup(72,45);
// by ID
G=gap.SmallGroup(72,45);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,3,20,1123,93,1604,314]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^3=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations
Export
Subgroup lattice of C2×C32⋊C4 in TeX
Character table of C2×C32⋊C4 in TeX